Sparse and Locally Constant Gaussian Graphical Models
نویسندگان
چکیده
Locality information is crucial in datasets where each variable corresponds to a measurement in a manifold (silhouettes, motion trajectories, 2D and 3D images). Although these datasets are typically under-sampled and high-dimensional, they often need to be represented with low-complexity statistical models, which are comprised of only the important probabilistic dependencies in the datasets. Most methods attempt to reduce model complexity by enforcing structure sparseness. However, sparseness cannot describe inherent regularities in the structure. Hence, in this paper we first propose a new class of Gaussian graphical models which, together with sparseness, imposes local constancy through `1-norm penalization. Second, we propose an efficient algorithm which decomposes the strictly convex maximum likelihood estimation into a sequence of problems with closed form solutions. Through synthetic experiments, we evaluate the closeness of the recovered models to the ground truth. We also test the generalization performance of our method in a wide range of complex real-world datasets and demonstrate that it captures useful structures such as the rotation and shrinking of a beating heart, motion correlations between body parts during walking and functional interactions of brain regions. Our method outperforms the state-of-the-art structure learning techniques for Gaussian graphical models both for small and large datasets.
منابع مشابه
Learning Brain fMRI Structure Through Sparseness and Local Constancy
1 Objective We propose sparse and locally constant Gaussian graphical models as well as structural equation models for learning the functional connectivity in the whole-brain. fMRI datasets are typically under-sampled and high-dimensional, they often need to be represented with low-complexity statistical models, which are comprised of only the important probabilistic dependencies. Most methods ...
متن کاملLarge-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models
This paper addresses the problem of scalable optimization for l1-regularized conditional Gaussian graphical models. Conditional Gaussian graphical models generalize the well-known Gaussian graphical models to conditional distributions to model the output network influenced by conditioning input variables. While highly scalable optimization methods exist for sparse Gaussian graphical model estim...
متن کاملLearning Sparse Gaussian Graphical Model with l0-regularization
For the problem of learning sparse Gaussian graphical models, it is desirable to obtain both sparse structures as well as good parameter estimates. Classical techniques, such as optimizing the l1-regularized maximum likelihood or Chow-Liu algorithm, either focus on parameter estimation or constrain to specific structure. This paper proposes an alternative that is based on l0-regularized maximum...
متن کاملLearning Latent Variable Gaussian Graphical Models
Gaussian graphical models (GGM) have been widely used in many highdimensional applications ranging from biological and financial data to recommender systems. Sparsity in GGM plays a central role both statistically and computationally. Unfortunately, real-world data often does not fit well to sparse graphical models. In this paper, we focus on a family of latent variable Gaussian graphical model...
متن کاملThe Log-Shift Penalty for Adaptive Estimation of Multiple Gaussian Graphical Models
Sparse Gaussian graphical models characterize sparse dependence relationships between random variables in a network. To estimate multiple related Gaussian graphical models on the same set of variables, we formulate a hierarchical model, which leads to an optimization problem with a nonconvex log-shift penalty function. We show that under mild conditions the optimization problem is convex despit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009